1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/*
* Copyright 2006 Amazon Technologies, Inc. or its affiliates.
* Amazon, Amazon.com and Carbonado are trademarks or registered trademarks
* of Amazon Technologies, Inc. or its affiliates. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.amazon.carbonado.qe;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import com.amazon.carbonado.Storable;
import com.amazon.carbonado.filter.AndFilter;
import com.amazon.carbonado.filter.Filter;
import com.amazon.carbonado.filter.OrFilter;
import com.amazon.carbonado.filter.PropertyFilter;
import com.amazon.carbonado.filter.Visitor;
import com.amazon.carbonado.info.ChainedProperty;
import com.amazon.carbonado.info.Direction;
import com.amazon.carbonado.info.OrderedProperty;
import com.amazon.carbonado.info.StorableIndex;
import com.amazon.carbonado.info.StorableInfo;
import com.amazon.carbonado.info.StorableIntrospector;
import com.amazon.carbonado.info.StorableKey;
/**
* Analyzes a query specification and determines how it can be executed as a
* union of smaller queries. If necessary, the UnionQueryAnalyzer will alter
* the query slightly, imposing a total ordering. Internally, an {@link
* IndexedQueryAnalyzer} is used for selecting the best indexes.
*
* <p>UnionQueryAnalyzer is sharable and thread-safe. An instance for a
* particular Storable type can be cached, avoiding repeated construction
* cost. In addition, the analyzer caches learned foreign indexes.
*
* @author Brian S O'Neill
*/
public class UnionQueryAnalyzer<S extends Storable> {
final IndexedQueryAnalyzer<S> mIndexAnalyzer;
/**
* @param type type of storable being queried
* @param indexProvider
* @throws IllegalArgumentException if type or indexProvider is null
*/
public UnionQueryAnalyzer(Class<S> type, IndexProvider indexProvider) {
mIndexAnalyzer = new IndexedQueryAnalyzer<S>(type, indexProvider);
}
/**
* @param filter optional filter which must be {@link Filter#isBound bound}
* @param orderings optional properties which define desired ordering
*/
public Result analyze(Filter<S> filter, List<OrderedProperty<S>> orderings) {
if (!filter.isBound()) {
// Strictly speaking, this is not required, but it detects the
// mistake of not properly calling initialFilterValues.
throw new IllegalArgumentException("Filter must be bound");
}
if (orderings == null) {
orderings = Collections.emptyList();
}
List<IndexedQueryAnalyzer<S>.Result> subResults = splitIntoSubResults(filter, orderings);
if (subResults.size() <= 1) {
// Total ordering not required.
return new Result(subResults);
}
boolean canMutateOrderings = false;
// If any orderings have an unspecified direction, switch to ASCENDING
// or DESCENDING, depending on which is more popular. Then build new
// sub-results.
for (int pos = 0; pos < orderings.size(); pos++) {
OrderedProperty<S> ordering = orderings.get(pos);
if (ordering.getDirection() != Direction.UNSPECIFIED) {
continue;
}
// Find out which direction is most popular for this property.
Tally tally = new Tally(ordering.getChainedProperty());
for (IndexedQueryAnalyzer<S>.Result result : subResults) {
tally.increment(findHandledDirection(result, ordering));
}
if (!canMutateOrderings) {
orderings = new ArrayList<OrderedProperty<S>>(orderings);
canMutateOrderings = true;
}
orderings.set(pos, ordering.direction(tally.getBestDirection()));
// Re-calc with specified direction. Only do one property at a time
// since one simple change might alter the query plan.
subResults = splitIntoSubResults(filter, orderings);
if (subResults.size() <= 1) {
// Total ordering no longer required.
return new Result(subResults);
}
}
// Gather all the keys available. As ordering properties touch key
// properties, they are removed from all key sets. When a key set size
// reaches zero, total ordering has been achieved.
List<Set<ChainedProperty<S>>> keys = getKeys();
// Check if current ordering is total.
for (OrderedProperty<S> ordering : orderings) {
ChainedProperty<S> property = ordering.getChainedProperty();
if (pruneKeys(keys, property)) {
// Found a key which is fully covered, indicating total ordering.
return new Result(subResults);
}
}
// Create a super key which contains all the properties required for
// total ordering. The goal here is to append these properties to the
// ordering in a fashion that takes advantage of each index's natural
// ordering. This in turn should cause any sort operation to operate
// over smaller groups. Smaller groups means smaller sort buffers.
// Smaller sort buffers makes a merge sort happy.
// Super key could be stored simply in a set, but a map makes it
// convenient for tracking tallies.
Map<ChainedProperty<S>, Tally> superKey = new LinkedHashMap<ChainedProperty<S>, Tally>();
for (Set<ChainedProperty<S>> key : keys) {
for (ChainedProperty<S> property : key) {
superKey.put(property, new Tally(property));
}
}
// Prepare to augment orderings to ensure a total ordering.
if (!canMutateOrderings) {
orderings = new ArrayList<OrderedProperty<S>>(orderings);
canMutateOrderings = true;
}
// Keep looping until total ordering achieved.
while (true) {
// For each ordering score, find the next free property. If
// property is in the super key increment a tally associated with
// property direction. Choose the property with the best tally and
// augment the orderings with it and create new sub-results.
// Remove the property from the super key and the key set. If any
// key is now fully covered, a total ordering has been achieved.
for (IndexedQueryAnalyzer<S>.Result result : subResults) {
OrderingScore<S> score = result.getCompositeScore().getOrderingScore();
List<OrderedProperty<S>> free = score.getFreeOrderings();
if (free.size() > 0) {
OrderedProperty<S> prop = free.get(0);
ChainedProperty<S> chainedProp = prop.getChainedProperty();
Tally tally = superKey.get(chainedProp);
if (tally != null) {
tally.increment(prop.getDirection());
}
}
}
Tally best = bestTally(superKey.values());
ChainedProperty<S> bestProperty = best.getProperty();
// Now augment the orderings and create new sub-results.
orderings.add(OrderedProperty.get(bestProperty, best.getBestDirection()));
subResults = splitIntoSubResults(filter, orderings);
if (subResults.size() <= 1) {
// Total ordering no longer required.
break;
}
// Remove property from super key and key set...
superKey.remove(bestProperty);
if (superKey.size() == 0) {
break;
}
if (pruneKeys(keys, bestProperty)) {
break;
}
// Clear the tallies for the next run.
for (Tally tally : superKey.values()) {
tally.clear();
}
}
return new Result(subResults);
}
/**
* Returns a list of all primary and alternate keys, stripped of ordering.
*/
private List<Set<ChainedProperty<S>>> getKeys() {
StorableInfo<S> info = StorableIntrospector.examine(mIndexAnalyzer.getStorableType());
List<Set<ChainedProperty<S>>> keys = new ArrayList<Set<ChainedProperty<S>>>();
keys.add(stripOrdering(info.getPrimaryKey().getProperties()));
for (StorableKey<S> altKey : info.getAlternateKeys()) {
keys.add(stripOrdering(altKey.getProperties()));
}
return keys;
}
private Set<ChainedProperty<S>> stripOrdering(Set<? extends OrderedProperty<S>> orderedProps) {
Set<ChainedProperty<S>> props = new HashSet<ChainedProperty<S>>(orderedProps.size());
for (OrderedProperty<S> ordering : orderedProps) {
props.add(ordering.getChainedProperty());
}
return props;
}
/**
* Removes the given property from all keys, returning true if any key has
* zero properties as a result.
*/
private boolean pruneKeys(List<Set<ChainedProperty<S>>> keys, ChainedProperty<S> property) {
boolean result = false;
for (Set<ChainedProperty<S>> key : keys) {
key.remove(property);
if (key.size() == 0) {
result = true;
continue;
}
}
return result;
}
private Tally bestTally(Iterable<Tally> tallies) {
Tally best = null;
for (Tally tally : tallies) {
if (best == null || tally.compareTo(best) < 0) {
best = tally;
}
}
return best;
}
private Direction findHandledDirection(IndexedQueryAnalyzer<S>.Result result,
OrderedProperty unspecified)
{
ChainedProperty<S> chained = unspecified.getChainedProperty();
OrderingScore<S> score = result.getCompositeScore().getOrderingScore();
List<OrderedProperty<S>> handled = score.getHandledOrderings();
for (OrderedProperty<S> property : handled) {
if (chained.equals(property)) {
return property.getDirection();
}
}
return Direction.UNSPECIFIED;
}
private List<IndexedQueryAnalyzer<S>.Result>
splitIntoSubResults(Filter<S> filter, List<OrderedProperty<S>> orderings)
{
// Required for split to work.
Filter<S> dnfFilter = filter.disjunctiveNormalForm();
Splitter splitter = new Splitter(orderings);
dnfFilter.accept(splitter, null);
List<IndexedQueryAnalyzer<S>.Result> subResults = splitter.mSubResults;
// Check if any sub-result handles nothing. If so, a full scan is the
// best option for the entire query and all sub-results merge into a
// single sub-result. Any sub-results which filter anything and contain
// a join property in the filter are exempt from the merge. This is
// because fewer joins are read than if a full scan is performed for
// the entire query. The resulting union has both a full scan and an
// index scan.
IndexedQueryAnalyzer<S>.Result full = null;
for (IndexedQueryAnalyzer<S>.Result result : subResults) {
if (!result.handlesAnything()) {
full = result;
break;
}
}
if (full == null) {
// Okay, no full scan needed.
return subResults;
}
List<IndexedQueryAnalyzer<S>.Result> mergedResults =
new ArrayList<IndexedQueryAnalyzer<S>.Result>();
for (IndexedQueryAnalyzer<S>.Result result : subResults) {
if (result == full) {
// Add after everything has been merged into it.
continue;
}
boolean exempt = result.getCompositeScore().getFilteringScore().hasAnyMatches();
if (exempt) {
// Must also have a join in the filter to be exempt.
List<PropertyFilter<S>> subFilters = PropertyFilterList.get(result.getFilter());
joinCheck: {
for (PropertyFilter<S> subFilter : subFilters) {
if (subFilter.getChainedProperty().getChainCount() > 0) {
// A chain implies a join was followed, so result is exempt.
break joinCheck;
}
}
// No joins found, result is not exempt from merging into full scan.
exempt = false;
}
}
if (exempt) {
mergedResults.add(result);
} else {
full = full.mergeRemainderFilter(result.getFilter());
}
}
if (mergedResults.size() == 0) {
// Nothing was exempt. Rather than return a result with a dnf
// filter, return full scan with a simpler reduced filter.
full.setRemainderFilter(filter.reduce());
}
mergedResults.add(full);
return mergedResults;
}
public class Result {
// FIXME: User of QueryAnalyzer results needs to identify what actual
// storage is used by an index. It is also responsible for grouping
// unions together if storage differs. If foreign index is selected,
// then join is needed.
private final List<IndexedQueryAnalyzer<S>.Result> mSubResults;
Result(List<IndexedQueryAnalyzer<S>.Result> subResults) {
mSubResults = subResults;
}
/**
* Returns results for each sub-query to be executed in the union. If
* only one result is returned, then no union needs to be performed.
*/
public List<IndexedQueryAnalyzer<S>.Result> getSubResults() {
return mSubResults;
}
}
/**
* Used to track which property direction is most popular.
*/
private class Tally implements Comparable<Tally> {
private final ChainedProperty<S> mProperty;
private int mAscendingCount;
private int mDescendingCount;
Tally(ChainedProperty<S> property) {
mProperty = property;
}
ChainedProperty<S> getProperty() {
return mProperty;
}
void increment(Direction dir) {
switch (dir) {
case UNSPECIFIED:
mAscendingCount++;
mDescendingCount++;
break;
case ASCENDING:
mAscendingCount++;
break;
case DESCENDING:
mDescendingCount++;
break;
}
}
/**
* Only returns ASCENDING or DESCENDING.
*/
Direction getBestDirection() {
if (mAscendingCount >= mDescendingCount) {
return Direction.ASCENDING;
}
return Direction.DESCENDING;
}
int getBestCount() {
if (mAscendingCount >= mDescendingCount) {
return mAscendingCount;
}
return mDescendingCount;
}
void clear() {
mAscendingCount = 0;
mDescendingCount = 0;
}
/**
* Returns -1 if this tally is better.
*/
public int compareTo(Tally other) {
int thisBest = getBestCount();
int otherBest = other.getBestCount();
if (thisBest < otherBest) {
return -1;
}
if (thisBest > otherBest) {
return 1;
}
return 0;
}
}
/**
* Analyzes a disjunctive normal filter into sub-results over filters that
* only contain 'and' operations.
*/
private class Splitter extends Visitor<S, Object, Object> {
private final List<OrderedProperty<S>> mOrderings;
final List<IndexedQueryAnalyzer<S>.Result> mSubResults;
Splitter(List<OrderedProperty<S>> orderings) {
mOrderings = orderings;
mSubResults = new ArrayList<IndexedQueryAnalyzer<S>.Result>();
}
@Override
public Object visit(OrFilter<S> filter, Object param) {
Filter<S> left = filter.getLeftFilter();
if (!(left instanceof OrFilter)) {
subAnalyze(left);
} else {
left.accept(this, param);
}
Filter<S> right = filter.getRightFilter();
if (!(right instanceof OrFilter)) {
subAnalyze(right);
} else {
right.accept(this, param);
}
return null;
}
// This method should only be called if root filter has no 'or' operators.
@Override
public Object visit(AndFilter<S> filter, Object param) {
subAnalyze(filter);
return null;
}
// This method should only be called if root filter has no logical operators.
@Override
public Object visit(PropertyFilter<S> filter, Object param) {
subAnalyze(filter);
return null;
}
private void subAnalyze(Filter<S> subFilter) {
IndexedQueryAnalyzer<S>.Result subResult =
mIndexAnalyzer.analyze(subFilter, mOrderings);
// Rather than blindly add to mSubResults, try to merge with
// another result. This in turn reduces the number of cursors
// needed by the union.
int size = mSubResults.size();
for (int i=0; i<size; i++) {
IndexedQueryAnalyzer<S>.Result existing = mSubResults.get(i);
if (existing.canMergeRemainder(subResult)) {
mSubResults.set(i, existing.mergeRemainder(subResult));
return;
}
}
// Couldn't merge, so add a new entry.
mSubResults.add(subResult);
}
}
}
|