/* * Copyright 2006 Amazon Technologies, Inc. or its affiliates. * Amazon, Amazon.com and Carbonado are trademarks or registered trademarks * of Amazon Technologies, Inc. or its affiliates. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.amazon.carbonado.qe; import java.util.ArrayList; import java.util.Collections; import java.util.LinkedHashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import com.amazon.carbonado.Storable; import com.amazon.carbonado.filter.AndFilter; import com.amazon.carbonado.filter.Filter; import com.amazon.carbonado.filter.OrFilter; import com.amazon.carbonado.filter.PropertyFilter; import com.amazon.carbonado.filter.Visitor; import com.amazon.carbonado.info.ChainedProperty; import com.amazon.carbonado.info.Direction; import com.amazon.carbonado.info.OrderedProperty; import com.amazon.carbonado.info.StorableIndex; import com.amazon.carbonado.info.StorableInfo; import com.amazon.carbonado.info.StorableIntrospector; import com.amazon.carbonado.info.StorableKey; /** * Analyzes a query specification and determines how it can be executed as a * union of smaller queries. If necessary, the UnionQueryAnalyzer will alter * the query slightly, imposing a total ordering. Internally, an {@link * IndexedQueryAnalyzer} is used for selecting the best indexes. * *

UnionQueryAnalyzer is sharable and thread-safe. An instance for a * particular Storable type can be cached, avoiding repeated construction * cost. In addition, the analyzer caches learned foreign indexes. * * @author Brian S O'Neill */ public class UnionQueryAnalyzer { final IndexedQueryAnalyzer mIndexAnalyzer; /** * @param type type of storable being queried * @param indexProvider * @throws IllegalArgumentException if type or indexProvider is null */ public UnionQueryAnalyzer(Class type, IndexProvider indexProvider) { mIndexAnalyzer = new IndexedQueryAnalyzer(type, indexProvider); } /** * @param filter optional filter which must be {@link Filter#isBound bound} * @param orderings optional properties which define desired ordering */ public Result analyze(Filter filter, List> orderings) { if (!filter.isBound()) { // Strictly speaking, this is not required, but it detects the // mistake of not properly calling initialFilterValues. throw new IllegalArgumentException("Filter must be bound"); } if (orderings == null) { orderings = Collections.emptyList(); } List.Result> subResults = splitIntoSubResults(filter, orderings); if (subResults.size() <= 1) { // Total ordering not required. return new Result(subResults); } boolean canMutateOrderings = false; // If any orderings have an unspecified direction, switch to ASCENDING // or DESCENDING, depending on which is more popular. Then build new // sub-results. for (int pos = 0; pos < orderings.size(); pos++) { OrderedProperty ordering = orderings.get(pos); if (ordering.getDirection() != Direction.UNSPECIFIED) { continue; } // Find out which direction is most popular for this property. Tally tally = new Tally(ordering.getChainedProperty()); for (IndexedQueryAnalyzer.Result result : subResults) { tally.increment(findHandledDirection(result, ordering)); } if (!canMutateOrderings) { orderings = new ArrayList>(orderings); canMutateOrderings = true; } orderings.set(pos, ordering.direction(tally.getBestDirection())); // Re-calc with specified direction. Only do one property at a time // since one simple change might alter the query plan. subResults = splitIntoSubResults(filter, orderings); if (subResults.size() <= 1) { // Total ordering no longer required. return new Result(subResults); } } // Gather all the keys available. As ordering properties touch key // properties, they are removed from all key sets. When a key set size // reaches zero, total ordering has been achieved. List>> keys = getKeys(); // Check if current ordering is total. for (OrderedProperty ordering : orderings) { ChainedProperty property = ordering.getChainedProperty(); if (pruneKeys(keys, property)) { // Found a key which is fully covered, indicating total ordering. return new Result(subResults); } } // Create a super key which contains all the properties required for // total ordering. The goal here is to append these properties to the // ordering in a fashion that takes advantage of each index's natural // ordering. This in turn should cause any sort operation to operate // over smaller groups. Smaller groups means smaller sort buffers. // Smaller sort buffers makes a merge sort happy. // Super key could be stored simply in a set, but a map makes it // convenient for tracking tallies. Map, Tally> superKey = new LinkedHashMap, Tally>(); for (Set> key : keys) { for (ChainedProperty property : key) { superKey.put(property, new Tally(property)); } } // Prepare to augment orderings to ensure a total ordering. if (!canMutateOrderings) { orderings = new ArrayList>(orderings); canMutateOrderings = true; } // Keep looping until total ordering achieved. while (true) { // For each ordering score, find the next free property. If // property is in the super key increment a tally associated with // property direction. Choose the property with the best tally and // augment the orderings with it and create new sub-results. // Remove the property from the super key and the key set. If any // key is now fully covered, a total ordering has been achieved. for (IndexedQueryAnalyzer.Result result : subResults) { OrderingScore score = result.getCompositeScore().getOrderingScore(); List> free = score.getFreeOrderings(); if (free.size() > 0) { OrderedProperty prop = free.get(0); ChainedProperty chainedProp = prop.getChainedProperty(); Tally tally = superKey.get(chainedProp); if (tally != null) { tally.increment(prop.getDirection()); } } } Tally best = bestTally(superKey.values()); ChainedProperty bestProperty = best.getProperty(); // Now augment the orderings and create new sub-results. orderings.add(OrderedProperty.get(bestProperty, best.getBestDirection())); subResults = splitIntoSubResults(filter, orderings); if (subResults.size() <= 1) { // Total ordering no longer required. break; } // Remove property from super key and key set... superKey.remove(bestProperty); if (superKey.size() == 0) { break; } if (pruneKeys(keys, bestProperty)) { break; } // Clear the tallies for the next run. for (Tally tally : superKey.values()) { tally.clear(); } } return new Result(subResults); } /** * Returns a list of all primary and alternate keys, stripped of ordering. */ private List>> getKeys() { StorableInfo info = StorableIntrospector.examine(mIndexAnalyzer.getStorableType()); List>> keys = new ArrayList>>(); keys.add(stripOrdering(info.getPrimaryKey().getProperties())); for (StorableKey altKey : info.getAlternateKeys()) { keys.add(stripOrdering(altKey.getProperties())); } return keys; } private Set> stripOrdering(Set> orderedProps) { Set> props = new HashSet>(orderedProps.size()); for (OrderedProperty ordering : orderedProps) { props.add(ordering.getChainedProperty()); } return props; } /** * Removes the given property from all keys, returning true if any key has * zero properties as a result. */ private boolean pruneKeys(List>> keys, ChainedProperty property) { boolean result = false; for (Set> key : keys) { key.remove(property); if (key.size() == 0) { result = true; continue; } } return result; } private Tally bestTally(Iterable tallies) { Tally best = null; for (Tally tally : tallies) { if (best == null || tally.compareTo(best) < 0) { best = tally; } } return best; } private Direction findHandledDirection(IndexedQueryAnalyzer.Result result, OrderedProperty unspecified) { ChainedProperty chained = unspecified.getChainedProperty(); OrderingScore score = result.getCompositeScore().getOrderingScore(); List> handled = score.getHandledOrderings(); for (OrderedProperty property : handled) { if (chained.equals(property)) { return property.getDirection(); } } return Direction.UNSPECIFIED; } private List.Result> splitIntoSubResults(Filter filter, List> orderings) { // Required for split to work. Filter dnfFilter = filter.disjunctiveNormalForm(); Splitter splitter = new Splitter(orderings); dnfFilter.accept(splitter, null); List.Result> subResults = splitter.mSubResults; // Check if any sub-result handles nothing. If so, a full scan is the // best option for the entire query and all sub-results merge into a // single sub-result. Any sub-results which filter anything and contain // a join property in the filter are exempt from the merge. This is // because fewer joins are read than if a full scan is performed for // the entire query. The resulting union has both a full scan and an // index scan. IndexedQueryAnalyzer.Result full = null; for (IndexedQueryAnalyzer.Result result : subResults) { if (!result.handlesAnything()) { full = result; break; } } if (full == null) { // Okay, no full scan needed. return subResults; } List.Result> mergedResults = new ArrayList.Result>(); for (IndexedQueryAnalyzer.Result result : subResults) { if (result == full) { // Add after everything has been merged into it. continue; } boolean exempt = result.getCompositeScore().getFilteringScore().hasAnyMatches(); if (exempt) { // Must also have a join in the filter to be exempt. List> subFilters = PropertyFilterList.get(result.getFilter()); joinCheck: { for (PropertyFilter subFilter : subFilters) { if (subFilter.getChainedProperty().getChainCount() > 0) { // A chain implies a join was followed, so result is exempt. break joinCheck; } } // No joins found, result is not exempt from merging into full scan. exempt = false; } } if (exempt) { mergedResults.add(result); } else { full = full.mergeRemainderFilter(result.getFilter()); } } if (mergedResults.size() == 0) { // Nothing was exempt. Rather than return a result with a dnf // filter, return full scan with a simpler reduced filter. full.setRemainderFilter(filter.reduce()); } mergedResults.add(full); return mergedResults; } public class Result { // FIXME: User of QueryAnalyzer results needs to identify what actual // storage is used by an index. It is also responsible for grouping // unions together if storage differs. If foreign index is selected, // then join is needed. private final List.Result> mSubResults; Result(List.Result> subResults) { mSubResults = subResults; } /** * Returns results for each sub-query to be executed in the union. If * only one result is returned, then no union needs to be performed. */ public List.Result> getSubResults() { return mSubResults; } } /** * Used to track which property direction is most popular. */ private class Tally implements Comparable { private final ChainedProperty mProperty; private int mAscendingCount; private int mDescendingCount; Tally(ChainedProperty property) { mProperty = property; } ChainedProperty getProperty() { return mProperty; } void increment(Direction dir) { switch (dir) { case UNSPECIFIED: mAscendingCount++; mDescendingCount++; break; case ASCENDING: mAscendingCount++; break; case DESCENDING: mDescendingCount++; break; } } /** * Only returns ASCENDING or DESCENDING. */ Direction getBestDirection() { if (mAscendingCount >= mDescendingCount) { return Direction.ASCENDING; } return Direction.DESCENDING; } int getBestCount() { if (mAscendingCount >= mDescendingCount) { return mAscendingCount; } return mDescendingCount; } void clear() { mAscendingCount = 0; mDescendingCount = 0; } /** * Returns -1 if this tally is better. */ public int compareTo(Tally other) { int thisBest = getBestCount(); int otherBest = other.getBestCount(); if (thisBest < otherBest) { return -1; } if (thisBest > otherBest) { return 1; } return 0; } } /** * Analyzes a disjunctive normal filter into sub-results over filters that * only contain 'and' operations. */ private class Splitter extends Visitor { private final List> mOrderings; final List.Result> mSubResults; Splitter(List> orderings) { mOrderings = orderings; mSubResults = new ArrayList.Result>(); } @Override public Object visit(OrFilter filter, Object param) { Filter left = filter.getLeftFilter(); if (!(left instanceof OrFilter)) { subAnalyze(left); } else { left.accept(this, param); } Filter right = filter.getRightFilter(); if (!(right instanceof OrFilter)) { subAnalyze(right); } else { right.accept(this, param); } return null; } // This method should only be called if root filter has no 'or' operators. @Override public Object visit(AndFilter filter, Object param) { subAnalyze(filter); return null; } // This method should only be called if root filter has no logical operators. @Override public Object visit(PropertyFilter filter, Object param) { subAnalyze(filter); return null; } private void subAnalyze(Filter subFilter) { IndexedQueryAnalyzer.Result subResult = mIndexAnalyzer.analyze(subFilter, mOrderings); // Rather than blindly add to mSubResults, try to merge with // another result. This in turn reduces the number of cursors // needed by the union. int size = mSubResults.size(); for (int i=0; i.Result existing = mSubResults.get(i); if (existing.canMergeRemainder(subResult)) { mSubResults.set(i, existing.mergeRemainder(subResult)); return; } } // Couldn't merge, so add a new entry. mSubResults.add(subResult); } } }