summaryrefslogtreecommitdiff
path: root/src/tesseract/objects/Toroid.java
blob: 7528129e58c60fe97adaae9f6a3ec9561ae4b7a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * Icosahedron.java
 * TCSS 491 Computational Worlds
 * Phillip Cardon
 */
package tesseract.objects;

import javax.media.j3d.Appearance;
import javax.media.j3d.IndexedQuadArray;
import javax.media.j3d.Material;
import javax.media.j3d.PointArray;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3f;

import com.sun.j3d.utils.geometry.GeometryInfo;
import com.sun.j3d.utils.geometry.NormalGenerator;

/**
 * Represents a Toroid, or donut like shape.
 * @author Phillip Cardon
 * @version 0.9a
 */
public class Toroid extends PhysicalObject {
	
	/**
	 * Float 4.
	 */
	private static final float INEERTIA_TENSOR_CONSTANT4 = 4f;
	
	/**
	 * Float 5.
	 */
	private static final float INEERTIA_TENSOR_CONSTANT5 = 5f;
	
	/**
	 * @param position starting position.
	 * @param mass of object.
	 * @param scale mesh scale.
	 * @param sliceRadius radius of slice "flesh."
	 * @param sliceDivisions resolution of slice "flesh" circles.
	 * @param arcRadius Radius of donut circle
	 * @param arcDivisions resolution of slices on donut.
	 */
	public Toroid(final Vector3f position, final float mass, final float scale,
			final float sliceRadius, final int sliceDivisions,
			final float arcRadius, final int arcDivisions) {
		super(position, mass);
		
		setShape(buildToroid(scale, sliceRadius, sliceDivisions,
				arcRadius, arcDivisions));
		if (inverseMass != 0) {
			float a = sliceRadius * sliceRadius;
			float b = arcRadius * arcRadius;
			inverseInertiaTensor.m00 = ((INEERTIA_TENSOR_CONSTANT4 * a
					+ INEERTIA_TENSOR_CONSTANT5 * b)
					/ (INEERTIA_TENSOR_CONSTANT4 * 2)) * mass;
			inverseInertiaTensor.m11 = inverseInertiaTensor.m00;
			inverseInertiaTensor.m22 = (a + ((INEERTIA_TENSOR_CONSTANT4 
					* 2 - INEERTIA_TENSOR_CONSTANT5)
					/ INEERTIA_TENSOR_CONSTANT4) * b) * mass;
			inverseInertiaTensor.invert();
		}
	}
	
	
	/**
	 * Creates donut.
	 * @param sliceRadius radius of slice "flesh."
	 * @param sliceDivisions resolution of slice "flesh" circles.
	 * @param scale of toroid (NYI)
	 * @param arcRadius Radius of donut circle
	 * @param arcDivisions resolution of slices on donut.
	 * @return Shape3D generated.
	 */
	public Shape3D buildToroid(final float scale, final float sliceRadius,
			final int sliceDivisions, final float arcRadius,
			final int arcDivisions) {
		Point3f[][] coordinates = new Point3f[arcDivisions][sliceDivisions];
		final float arcAngle = (float) (Math.PI * 2.0);
		final float sliceDivisionAngle = 2 * (float) Math.PI / sliceDivisions;
		Transform3D center = new Transform3D();
		center.setTranslation(new Vector3f(-(arcRadius), 0, 0));
		for (int i = 0; i < sliceDivisions; i++) {
			coordinates[0][i] = new Point3f(sliceRadius 
					* (float) Math.cos(i * sliceDivisionAngle), 0f, sliceRadius 
					* (float) Math.sin(i * sliceDivisionAngle));
			
		}
		
		Transform3D trans3D = new Transform3D();
		trans3D.setTranslation(new Vector3f(arcRadius, 0, 0));
		Transform3D tmp = new Transform3D();
		tmp.rotZ(-arcAngle / (arcDivisions - 1));
		trans3D.mul(tmp);
		tmp.setIdentity();
		tmp.setTranslation(new Vector3f(-arcRadius, 0, 0));
		trans3D.mul(tmp);
		//trans3D.mul(center);
		
		for (int j = 1; j < arcDivisions; j++) {
			for (int i = 0; i < sliceDivisions; i++) {
				coordinates[j][i] = new Point3f(coordinates[j - 1][i]);
				trans3D.transform(coordinates[j][i]);
				//center.transform(coordinates[j][i]);
				//coordinates[j][i].scale(scale);
				
			}
		}
		for (int j = 0; j < arcDivisions; j++) {
			for (int i = 0; i < sliceDivisions; i++) {
				center.transform(coordinates[j][i]);
			}
		}
		
		IndexedQuadArray geometry = new IndexedQuadArray(arcDivisions 
				* sliceDivisions, PointArray.COORDINATES,
				(2 * 2) * sliceDivisions * (arcDivisions - 1));
		for (int j = 0; j < arcDivisions; j++) {
			geometry.setCoordinates(j * sliceDivisions, coordinates[j]);
		}
		
		int index = 0;
		int last = 0;
		for (int j = 0; j < arcDivisions - 2; j++) {
			for (int i = 0; i < sliceDivisions; i++) {
				geometry.setCoordinateIndex(index++, j * sliceDivisions + i);
				geometry.setCoordinateIndex(index++, (j + 1) * sliceDivisions 
						+ i);
				geometry.setCoordinateIndex(index++, (j + 1) * sliceDivisions 
						+ (i + 1) % sliceDivisions);
				geometry.setCoordinateIndex(index++, j * sliceDivisions 
						+ (i + 1) % sliceDivisions);
			}
			last = j;
		}
		last++;
		for (int i = 0; i < sliceDivisions; i++) {
			geometry.setCoordinateIndex(index++, last * sliceDivisions + i);
			geometry.setCoordinateIndex(index++, (0) * sliceDivisions + i);
			geometry.setCoordinateIndex(index++, (0) * sliceDivisions + (i + 1) 
					% sliceDivisions);
			geometry.setCoordinateIndex(index++, last * sliceDivisions 
					+ (i + 1) % sliceDivisions);
		}
		
		
		GeometryInfo gInfo = new GeometryInfo(geometry);
		gInfo.convertToIndexedTriangles();
		new NormalGenerator().generateNormals(gInfo);
		
		Shape3D shape = new Shape3D(gInfo.getGeometryArray());

		Appearance app = new Appearance();
		Material mat = new Material();
		mat.setDiffuseColor(1, 0, 0);
		app.setMaterial(mat);
		shape.setAppearance(app);
	
		return shape;
	}
}