summaryrefslogtreecommitdiff
path: root/src/alden/CollidableObject.java
blob: a2738fafbe7b30b4f6dd5ae7745f65ae4db56b49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package alden;
import java.util.*;
import javax.media.j3d.*;
import javax.vecmath.*;

@SuppressWarnings("restriction")
public abstract class CollidableObject {
	protected float inverseMass;
	// The center of mass in the local coordinate system
	protected Vector3f centerOfMass;
	protected Vector3f position, previousPosition;
	protected Vector3f velocity, previousVelocity;
	protected Vector3f forceAccumulator;
	protected Quat4f orientation;
	protected Vector3f angularVelocity;
	protected Vector3f torqueAccumulator;
	protected Matrix3f inverseInertiaTensor;
	protected float coefficientOfRestitution;
	protected float penetrationCorrection;
	protected float dynamicFriction;
	protected BranchGroup BG;
	protected TransformGroup TG;
	protected Node node;
	private ArrayList<Vector3f> vertexCache;
	private ArrayList<CollisionDetector.Triangle> triangleCache;
	private Bounds boundsCache;
	// The inverse inertia tensor in world coordinates
	private Matrix3f inverseInertiaTensorCache;
	
	public CollidableObject() {
		this(1);
	}

	public CollidableObject(float mass) {
		if (mass <= 0)
			throw new IllegalArgumentException();
		inverseMass = 1 / mass;
		centerOfMass = new Vector3f();
		position = new Vector3f();
		previousPosition = new Vector3f();
		velocity = new Vector3f();
		previousVelocity = new Vector3f();
		forceAccumulator = new Vector3f();
		orientation = new Quat4f(0, 0, 0, 1);
		angularVelocity = new Vector3f();
		torqueAccumulator = new Vector3f();
		inverseInertiaTensor = new Matrix3f();
		coefficientOfRestitution = 0.75f;
		penetrationCorrection = 1.05f;
		dynamicFriction = 0.02f;
		TG = new TransformGroup();
		TG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
		BG = new BranchGroup();
		BG.setCapability(BranchGroup.ALLOW_DETACH);
		BG.addChild(TG);
	}

	protected void setShape(Node node) {
		this.node = node;
		TG.addChild(node);
//		TG.addChild(CollisionDetector.createShape(CollisionDetector.triangularize(node)));
	}

	public Group getGroup() {
		return BG;
	}

	public void detach() {
		BG.detach();
	}

	public void updateState(float duration) {
		previousPosition.set(position);
		previousVelocity.set(velocity);
		// The force vector now becomes the acceleration vector.
		forceAccumulator.scale(inverseMass);
		position.scaleAdd(duration, velocity, position);
		position.scaleAdd(duration * duration / 2, forceAccumulator, position);
		velocity.scaleAdd(duration, forceAccumulator, velocity);
		// The force vector is cleared.
		forceAccumulator.set(0, 0, 0);
		
		angularVelocity.scaleAdd(duration, torqueAccumulator, angularVelocity);
		torqueAccumulator.set(0, 0, 0);
		UnQuat4f tmp = new UnQuat4f(angularVelocity.x, angularVelocity.y, angularVelocity.z, 0);
		tmp.scale(duration / 2);
		tmp.mul(orientation);
		orientation.add(tmp);
		orientation.normalize();
	}

	protected void updateTransformGroup() {
		Vector3f com = new Vector3f(-centerOfMass.x, -centerOfMass.y, -centerOfMass.z);
		Transform3D tmp = new Transform3D();
		tmp.setTranslation(com);
		Transform3D tmp2 = new Transform3D();
		tmp2.setRotation(orientation);
		com.negate();
		com.add(position);
		tmp2.setTranslation(com);
		tmp2.mul(tmp);
		TG.setTransform(tmp2);
		clearCaches();
	}

	public ArrayList<Vector3f> getVertices() {
		if (vertexCache == null)
			vertexCache = CollisionDetector.extractVertices(node);
		return vertexCache;
	}
	
	protected ArrayList<CollisionDetector.Triangle> getCollisionTriangles() {
		if (triangleCache == null)
			triangleCache = CollisionDetector.triangularize(node);
		return triangleCache;
	}

	protected Bounds getBounds() {
		if (boundsCache == null) {
			boundsCache = node.getBounds();
			Transform3D tmp = new Transform3D();
			node.getLocalToVworld(tmp);
			boundsCache.transform(tmp);
		}
		return boundsCache;
	}

	protected Matrix3f getInverseInertiaTensor() {
		if (inverseInertiaTensorCache == null) {
			inverseInertiaTensorCache = new Matrix3f();
			inverseInertiaTensorCache.set(orientation);
			Matrix3f tmp = new Matrix3f(inverseInertiaTensor);
			Matrix3f tmp2 = new Matrix3f(inverseInertiaTensorCache);
			tmp2.invert();
			tmp.mul(tmp2);
			inverseInertiaTensorCache.mul(tmp);
		}
		return inverseInertiaTensorCache;
	}

	protected void clearCaches() {
		vertexCache = null;
		triangleCache = null;
		boundsCache = null;
		inverseInertiaTensorCache = null;
	}

	public void resolveCollisions(CollidableObject other) {
		ArrayList<CollisionInfo> collisions = CollisionDetector.calculateCollisions(this, other);
		if (collisions.isEmpty())
			return;

		CollisionInfo finalCollision = null;
		float max = Float.NEGATIVE_INFINITY;
		int count = 0;
		for (CollisionInfo collision : collisions) {
			Vector3f thisRelativeContactPosition = new Vector3f();
			thisRelativeContactPosition.scaleAdd(-1, position, collision.contactPoint);
			thisRelativeContactPosition.scaleAdd(-1, centerOfMass, thisRelativeContactPosition);
			Vector3f thisContactVelocity = new Vector3f();
			thisContactVelocity.cross(angularVelocity, thisRelativeContactPosition);
			thisContactVelocity.add(previousVelocity);
			Vector3f otherRelativeContactPosition = new Vector3f();
			otherRelativeContactPosition.scaleAdd(-1, other.position, collision.contactPoint);
			otherRelativeContactPosition.scaleAdd(-1, other.centerOfMass, otherRelativeContactPosition);
			Vector3f otherContactVelocity = new Vector3f();
			otherContactVelocity.cross(other.angularVelocity, otherRelativeContactPosition);
			otherContactVelocity.add(other.previousVelocity);
			float speed = collision.contactNormal.dot(thisContactVelocity) - collision.contactNormal.dot(otherContactVelocity);
			if (speed > 0)
				if (speed > max + CollisionDetector.EPSILON) {
					finalCollision = collision;
					max = speed;
					count = 1;
				} else if (speed >= max - CollisionDetector.EPSILON) {
					finalCollision.contactPoint.add(collision.contactPoint);
					finalCollision.penetration += collision.penetration;
					count++;
				}
		}
		if (finalCollision != null) {
			finalCollision.contactPoint.scale(1f / count);
			finalCollision.penetration /= count;
			resolveCollision(other, finalCollision);
			updateTransformGroup();
			other.updateTransformGroup();
		}
	}

	public void resolveCollision(CollidableObject other, CollisionInfo ci) {
		if (ci.penetration <= 0)
			return;
		
		Vector3f thisRelativeContactPosition = new Vector3f();
		thisRelativeContactPosition.scaleAdd(-1, position, ci.contactPoint);
		thisRelativeContactPosition.scaleAdd(-1, centerOfMass, thisRelativeContactPosition);
		Vector3f thisContactVelocity = new Vector3f();
		thisContactVelocity.cross(angularVelocity, thisRelativeContactPosition);
		thisContactVelocity.add(previousVelocity);
		
		Vector3f otherRelativeContactPosition = new Vector3f();
		otherRelativeContactPosition.scaleAdd(-1, other.position, ci.contactPoint);
		otherRelativeContactPosition.scaleAdd(-1, other.centerOfMass, otherRelativeContactPosition);
		Vector3f otherContactVelocity = new Vector3f();
		otherContactVelocity.cross(other.angularVelocity, otherRelativeContactPosition);
		otherContactVelocity.add(other.previousVelocity);
		
		float initialClosingSpeed = ci.contactNormal.dot(thisContactVelocity) - ci.contactNormal.dot(otherContactVelocity);
		float finalClosingSpeed = -initialClosingSpeed * coefficientOfRestitution;
		float deltaClosingSpeed = finalClosingSpeed - initialClosingSpeed;
		float totalInverseMass = inverseMass + other.inverseMass;
		if (totalInverseMass == 0)
			return;
		
		/* Dynamic Friction */
		if (dynamicFriction > 0) {
			Vector3f perpVelocity = new Vector3f();
			perpVelocity.scaleAdd(initialClosingSpeed, ci.contactNormal, previousVelocity);
			if (perpVelocity.length() > 0) {
				perpVelocity.normalize();
				Vector3f acceleration = new Vector3f();
				acceleration.scaleAdd(-1, previousVelocity, velocity);
				velocity.scaleAdd(dynamicFriction * acceleration.dot(ci.contactNormal), perpVelocity, velocity);
			}
			
			perpVelocity.scaleAdd(initialClosingSpeed, ci.contactNormal, other.previousVelocity);
			if (perpVelocity.length() > 0) {
				perpVelocity.normalize();
				Vector3f acceleration = new Vector3f();
				acceleration.scaleAdd(-1, other.previousVelocity, other.velocity);
				other.velocity.scaleAdd(dynamicFriction * acceleration.dot(ci.contactNormal), perpVelocity, other.velocity);
			}
		}
		
		Vector3f thisMovementUnit = new Vector3f();
		thisMovementUnit.cross(thisRelativeContactPosition, ci.contactNormal);
		getInverseInertiaTensor().transform(thisMovementUnit);
		Vector3f thisAngularVelocityUnit = new Vector3f();
		thisAngularVelocityUnit.cross(thisMovementUnit, thisRelativeContactPosition);
		totalInverseMass += thisAngularVelocityUnit.dot(ci.contactNormal);
		
		Vector3f otherMovementUnit = new Vector3f();
		otherMovementUnit.cross(otherRelativeContactPosition, ci.contactNormal);
		other.getInverseInertiaTensor().transform(otherMovementUnit);
		Vector3f otherAngularVelocityUnit = new Vector3f();
		otherAngularVelocityUnit.cross(otherMovementUnit, otherRelativeContactPosition);
		totalInverseMass += otherAngularVelocityUnit.dot(ci.contactNormal);

		Vector3f impulse = new Vector3f(ci.contactNormal);
		impulse.scale(deltaClosingSpeed / totalInverseMass);
	
		velocity.scaleAdd(inverseMass, impulse, velocity);
		Vector3f tmp = new Vector3f();
		tmp.cross(thisRelativeContactPosition, impulse);
		getInverseInertiaTensor().transform(tmp);
		angularVelocity.add(tmp);
		position.scaleAdd(-ci.penetration * penetrationCorrection * inverseMass / totalInverseMass, ci.contactNormal, position);
		thisMovementUnit.scale(-ci.penetration * penetrationCorrection / totalInverseMass);
		UnQuat4f tmp2 = new UnQuat4f(thisMovementUnit.x, thisMovementUnit.y, thisMovementUnit.z, 0);
		tmp2.scale(0.5f);
		tmp2.mul(orientation);
		orientation.add(tmp2);
		orientation.normalize();
		
		impulse.negate();
		other.velocity.scaleAdd(other.inverseMass, impulse, other.velocity);
		tmp.cross(otherRelativeContactPosition, impulse);
		other.getInverseInertiaTensor().transform(tmp);
		other.angularVelocity.add(tmp);
		other.position.scaleAdd(ci.penetration * penetrationCorrection * other.inverseMass / totalInverseMass, ci.contactNormal, other.position);
		otherMovementUnit.scale(ci.penetration * penetrationCorrection / totalInverseMass);
		tmp2.set(otherMovementUnit.x, otherMovementUnit.y, otherMovementUnit.z, 0);
		tmp2.scale(0.5f);
		tmp2.mul(other.orientation);
		other.orientation.add(tmp2);
		other.orientation.normalize();
	}
}